Plasmonic graphene transparent conductors.

نویسندگان

  • Guowei Xu
  • Jianwei Liu
  • Qian Wang
  • Rongqing Hui
  • Zhijun Chen
  • Victor A Maroni
  • Judy Wu
چکیده

Plasmonic graphene is fabricated using thermally assisted self-assembly of silver nanoparticles on graphene. The localized surface-plasmonic effect is demonstrated with the resonance frequency shifting from 446 to 495 nm when the lateral dimension of the Ag nanoparticles increases from about 50 to 150 nm. Finite-difference time-domain simulations are employed to confirm the experimentally observed light-scattering enhancement in the solar spectrum in plasmonic graphene and the decrease of both the plasmonic resonance frequency and amplitude with increasing graphene thickness. In addition, plasmonic graphene shows much-improved electrical conductance by a factor of 2-4 as compared to the original graphene, making the plasmonic graphene a promising advanced transparent conductor with enhanced light scattering for thin-film optoelectronic devices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Plasmonics with two-dimensional conductors.

A wealth of effort in photonics has been dedicated to the study and engineering of surface plasmonic waves in the skin of three-dimensional bulk metals, owing largely to their trait of subwavelength confinement. Plasmonic waves in two-dimensional conductors, such as semiconductor heterojunction and graphene, contrast the surface plasmonic waves on bulk metals, as the former emerge at gigahertz ...

متن کامل

Novel Highly Conductive and Transparent Graphene-Based Conductors

Transparent conductors based on few-layer graphene (FLG) intercalated with ferric chloride (FeCl(3)) have an outstandingly low sheet resistance and high optical transparency. FeCl(3)-FLGs outperform the current limit of transparent conductors such as indium tin oxide, carbon-nanotube films, and doped graphene materials. This makes FeCl(3)-FLG materials the best transparent conductor for optoele...

متن کامل

Large-area functionalized CVD graphene for work function matched transparent electrodes

The efficiency of flexible photovoltaic and organic light emitting devices is heavily dependent on the availability of flexible and transparent conductors with at least a similar workfunction to that of Indium Tin Oxide. Here we present the first study of the work function of large area (up to 9 cm(2)) FeCl3 intercalated graphene grown by chemical vapour deposition on Nickel, and demonstrate va...

متن کامل

Prospects of graphene electrodes in photovoltaics

Transparent conductors (TCs) are becoming extremely popular in many different electronic applications such as touch panels, displays, light emitting devices, light sensors and solar cells. The commonly used electrode in these applications is Indium Tin Oxide (ITO). However, the cost of ITO is increasing rapidly due to the limited supply of Indium. Other issues such as lack of flexibility and co...

متن کامل

Dual-band, Dynamically Tunable Plasmonic Metamaterial Absorbers Based on Graphene for Terahertz Frequencies

In this paper, a compact plasmonic metamaterial absorber for terahertz frequencies is proposed and simulated. The absorber is based on metamaterial graphene structures, and benefits from dynamically controllable properties of graphene. Through patterning graphene layers, plasmonic resonances are tailored to provide a dual band as well as an improved bandwidth absorption. Unit cell of the design...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Advanced materials

دوره 24 10  شماره 

صفحات  -

تاریخ انتشار 2012